
A Preliminary Analysis of the MPI Queue Characterisitics of Several
Applications

Ron Brightwell Sue Goudy Keith Underwood
Sandia National Laboratories∗

PO Box 5800
Albuquerque, NM 87185-1110

E-mail: {rbbrigh,spgoudy,kdunder}@sandia.gov

Abstract

Understanding the message passing behavior and net-
work resource usage of distributed-memory message-
passing parallel applications is critical to achieving high
performance and scalability. While much research has fo-
cused on how applications use critical compute related re-
sources, relatively little attention has been devoted to char-
acterizing the usage of network resources, specifically those
needed by the network interface. This paper discusses the
importance of understanding network interface resource us-
age requirements for parallel applications and describes an
initial attempt to gather network resource usage data for
several real-world codes. The results show widely vary-
ing usage patterns between processes in the same paral-
lel job and indicate that resource requirements can change
dramatically as process counts increase and input data
changes. This suggests that general network resource man-
agement strategies may not be widely applicable, and that
adaptive strategies or more fine-grained controls may be
necessary for environments where network interface re-
sources are severely constrained.

1. Introduction

There are many challenges to running an application on a
large-scale, distributed-memory massively parallel process-
ing (MPP) machine. Much attention has been directed to-
ward understanding the performance and scalability of ap-
plications. This focus has been on understanding and char-
acterizing resource usage including host processors, mem-

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

ory, and, to a limited extent, the network. The goal of most
performance analysis tools is to provide the insight nec-
essary to insure that an application is using important re-
sources to its maximum benefit. Every effort is made to
find the appropriate strategies for management of proces-
sor cycles, the memory subsystem, and the network. The
performance and scalability of an application is largely de-
termined by how well these resources can be used as the
scale of the system increases.

While significant effort has been directed toward under-
standing the usage of host processors and memory, there
is relatively little effort aimed at understanding and char-
acterizing network resource usage, and network interface
resources in particular. Networks are typically measured in
terms of micro-benchmarks that demonstrate the maximum
performance potential in idealized situations. Although this
set of micro-benchmarks has been extended to enable mea-
surements of network performance using typical applica-
tion scenarios, there is currently little understanding or pub-
lished researched of what typical scenarios really are.

Even as the struggle to understand the behavior of real-
world applications continues, networks are requiring greater
resources. New bus technologies, such as PCI Express and
HyperTransport, have enabled lower latencies than were
previously possible, and advanced signaling technology has
led to a significant increase in network bandwidth. To
leverage performance increases, network interfaces have in-
creased in processing power and memory capacity. As net-
work interfaces become more complex and the number and
type of resources associated with the network continues to
increase, the general lack of understanding also increases.
In order to address this problem, the amount of effort di-
rected toward understanding network resource usage will
need to be similar to that currently being put into gathering,
analyzing, and obtaining insight from host processing and
memory resources.

This paper presents an initial analysis of the network
interface processing and memory requirements of several
real-world applications. There are two important impacts
of this analysis. First, this type of data can be beneficial
from an application performance standpoint. The applica-
tion may be modified to better match a fixed resource man-
agement scheme, or, conversely, a more efficient manage-
ment scheme can be employed to meet the needs of the ap-
plication. Second, this type of data can be extremely bene-
ficial for designing future networks and network interfaces.

The rest of the paper is organized as follows. In the
next section, we provide additional background informa-
tion, which is followed in Section 3 by a description of our
approach to characterizing network resource usage. In Sec-
tion 4, we describe the platform from which our data has
been collected and provide details about the applications
that were used. Results and analysis of the collected data
are presented in Section 5. The important conclusions of
this study are discussed in Section 6. Section 7 discusses
this work in the context of similar studies, and Section 8
provides an overview of future work on this topic.

2. Background

2.1. Placement and Management of Network Re-
sources

Network resources and their associated management
strategies have continued to evolve throughout the existence
of distributed memory MPP platforms. In early MPPs, such
as the Intel Paragon[13], the operating system allocated and
managed network resources. Accessing the network re-
quired an application to invoke the operating system. The
operating system managed buffer space, implemented flow
control protocols, and allocated other resources (such as
message descriptor handles for identifying asynchronous
transfers). When a resource was exhausted, the operating
system had to allocate new resources or recover used ones.
For example, an application using the NX message pass-
ing interface had a (fixed) maximum number of outstanding
message receive descriptors. A process that tried to exceed
this limit would block until a transfer completed and a pre-
viously allocated descriptor was freed.

Research on these early platforms led to new strategies
for dealing with network resources. For example, a fun-
damental part of the Puma [19] lightweight kernel research
at Sandia National Laboratories and the University of New
Mexico is the Portals network API [6]. Portals moves nearly
all of the networking resources into the application’s ad-
dress space and provides building blocks that can be assem-
bled to handle many different types of protocols. By mov-
ing resources to the user-level, the application is only con-
strained by the amount of its memory that it wants to ded-

icate to networking. It also controls how much processing
will be needed to handle messaging requests. This strategy
has several benefits. The size of the Puma kernel is fixed
and does not change as a process allocates and consumes
more network resources, and the complexity of the kernel is
significantly reduced.

Recent networking technology has shifted the placement
of network resources and requires a reexamination of re-
source usage and management strategies. Network inter-
faces now have processor and memory resources dedicated
to handling network activities; however, these resources are
significantly less capable than the resources on the host.
The embedded processors used on current-generation high-
performance network interfaces are at least an order of mag-
nitude slower than typical host processors, and the amount
of on-board memory is one to four orders of magnitude
smaller than host memory.

This arrangement is prevalent in large and extreme scale
systems. ASCI Q (over 8000 processors) uses the Quadrics
network[14], which handles many networking tasks using
a user programmable thread processor on the NIC. Numer-
ous large clusters[2, 1] use the Quadrics or Myrinet network
(which also has a processor on the NIC). The Red Storm su-
percomputer, a joint project between Cray, Inc., and Sandia,
has over 10,000 processors[3, 8] and uses a custom network
designed by Cray. The network interface for Red Storm
has a 500 MHz PowerPC and 384 KB of on-board memory,
while the host node has a 2.0 GHz AMD Opteron and 2 GB
of main memory. Thus, the network interface is tightly con-
strained in memory resources and somewhat constrained
in processing resources. Even the 65,000 node IBM Blue
Gene/L supercomputer must consider the allocation of re-
sources to networking as it uses a similar architecture to the
Intel ASCI Red machine[20] currently deployed at Sandia.
In this architecture, two processors (700 MHz PowerPC 440
processors on Blue Gene/L and 333 MHz Pentium II pro-
cessors on ASCI Red) share main memory and share access
to the network(s). Network resource usage will significantly
impact how application and network processing is divided
between the processors.

2.2. MPI Network Resources

Although the high-performance networks in large-scale
distributed-memory machines are often used for other traf-
fic (e.g. I/O traffic), MPI is typically the most important
service to analyze in terms of resource usage. This impor-
tance arises from two factors. First, MPI typically has the
biggest influence on the network performance of an applica-
tion. Second, MPI is often the only service that is primarily
controlled by the user rather than the system. That is, MPI is
the only network service where the application programmer
is largely in charge of behavior at both the sender and the

receiver. Other services involve system-level components
that provide the opportunity to tightly control resource allo-
cation and management.

Different networks require different levels of host com-
putation to process MPI messages. For example, one net-
work may require a host processor to setup and monitor net-
work DMA activity, while another network may completely
decouple the host processor from the network, and avoid
any host processor involvement in data transfers. Since
characteristics of this type are highly network dependent,
we have taken a more general approach to characterizing
MPI processor resources by analyzing message queue data.

Conceptually, MPI implementations have two message
queues — one that contains a list of outstanding receive re-
quests (the posted receive queue) and one that contains a
list of messages that arrived without a posted receive re-
quest (the early arrival or unexpected queue). The posted
receive queue must be traversed when a message arrives.
For most implementations, which represent this queue with
a linear list1, the processing time grows with the length of
the queue [21]. Likewise, the unexpected queue must be tra-
versed whenever a receive request is posted. The MPI im-
plementation must atomically check the unexpected queue
for a matching message before the request is added to the
posted receive queue. Again, traversing this (typically) lin-
ear list requires processing resources.

There are several ways in which an MPI implementa-
tion can consume memory. Networks typically have a fi-
nite number of send and receive requests that can be allo-
cated. In some cases, implementations must use sophis-
ticated credit-based schemes for efficiently managing net-
work transfer requests. Implementations also need to set
aside memory for buffering unexpected messages. This
memory resource is probably the biggest single concern for
any MPI implementor. Since most implementations send
short messages eagerly to optimize for latency, situations
like an N-to-1 communication pattern can quickly exhaust
the buffer space for unexpected messages.

3. Approach

In this section, we describe how we have instrumented
the MPICH [12] implementation of MPI to gather infor-
mation about MPI network resource usage. We chose to
instrument MPICH because it is the supported production
MPI implementation on our target platform, which is de-
scribed in detail in the following section. This allowed us
to leverage existing application configuration and build en-
vironments.

1Other data structures (such as hashing) are occasionally used, but
many of them can be foiled by applications that wildcard the source and
message tag fields in an MPI Recv.

The MPICH implementation has an abstract device in-
terface (ADI) [11] that provides a network transport layer
with the functions necessary to implement MPI semantics.
In particular, the posted receive queue and unexpected mes-
sage queue are linked lists that are managed by the ADI
code. These linked lists are not usually manipulated by the
underlying transport layer, because the ADI abstracts the
implementation of these queues.

For example, the ADI provides a function call,
MPID Msg arrived(), for the transport layer to use to
signal the arrival of a message. This function traverses the
posted receive queue to see if there is a matching receive
posted. If so, it removes the entry from the queue and pro-
ceeds. If not, it enqueues information about the new mes-
sage in the unexpected queue. In order to measure the aver-
age number of times the posted receive queue is searched,
we increment a counter when MPID Msg arrived() is
called. Inside this function call, we also increment another
counter each time a queue entry is inspected.

This function call was also used to track the number of
unexpected and expected messages. At each invocation of
the function, a counter is incremented based on the type of
message. In order to have more detail about short versus
long messages, we traced the code further down into the
device-specific transport layer (ch gm) and inserted coun-
ters there.

The unexpected queue must be searched each time
an MPI receive is posted. The MPICH ADI function,
MPID Search unexpected queue and post(),
searches through the unexpected queue looking for a
matching message. If no match is found, the receive is
added to the posted receive queue. If a match is found,
the unexpected message is dequeued and the receive is
processed. This function calls another ADI function that
searches the unexpected queue. We simply increment a
counter each time this function is called, and increment
another counter each time an unexpected queue entry is
inspected.

We also profiled the queue management utility functions
in the MPICH ADI to keep track of maximum queue length
(for each queue). Each time an entry is enqueued, we incre-
ment a length counter associated with the queue. Likewise,
this counter is decremented each time an entry is dequeued.
Each time a new entry is enqueued, we inspect the length
counter to maintain its maximum value.

In order to allow applications to access these counters
and maximum values, they were implemented as global
variables. This approach allows them to be initialized with-
out an explicit function call and allows them to be exported
to the application easily. The MPICH ADI is not multi-
threaded, so the global values are only manipulated by a
single thread of execution.

The data was collected through the MPI profiling in-

terface and written to a file. We defined our own
MPI Finalize() routine to record the values and gather
them to rank 0, which opens a text file and writes them out
for each rank. This eliminates the need to modify applica-
tions. We simply re-link the code with the profiling code
and the instrumented MPI library.

The overhead of instrumenting MPICH this way is neg-
ligible. The additional computation needed for this instru-
mentation is insignificant, especially for unexpected mes-
sages, which are already in the low-performance path. For
a posted message, the computation and logic operations are
performed after the message has been received, so the addi-
tional computation does not impact the transfer of the data.
To reduce variability, we ran each test four times and report
the average of the runs. Each run was made on the same set
of compute nodes for each of the different processor counts.

Because the determination of expected and unexpected
messages and the implementation of MPI message queues
are specific to each MPI implementation, and possibly spe-
cific to each transport layer within an MPI implementation,
general instrumentation strategies, such as those used for
performance analysis, are not sufficient. There is an ongo-
ing effort to standardize some of this information in a way
that application developers as well as tool implementors can
use, which we describe in Section 7.

4. Platform and Applications

All tests were run on the Vplant machine at Sandia Na-
tional Laboratories. Vplant is a Linux cluster with approx-
imately 320 compute nodes composed of Intel Pentium-III
and Pentium-4 processors. These experiments were run on
dual-processor Pentium-4 Xeon nodes running at 2.0 GHz.
Each node has 1 GB of main memory and a Myrinet-2000
[4] network interface. The nodes are connected in a Clos
topology. Vplant was running a Linux 2.4.18 kernel, GM
version 1.6.4, and MPICH/GM version 1.2.4..11. All of our
runs used only one process per node. A number of produc-
tion applications were evaluated on the experimental plat-
form, including LAMMPS, CTH, and ITS.

4.1. LAMMPS

LAMMPS is a classical molecular dynamics (MD) code
designed to simulate systems at the atomic or molecular
level[17, 16, 18]. Typical applications include simulations
of proteins in solution, liquid-crystals, polymers, zeolites,
or simple Lenard-Jones systems. It runs on any parallel
platform that supports the MPI message-passing library 2.

This study presents data from the Bead-Spring Polymer
Chains input deck. This is a simulation of a simple system

2This text adapted with permission from http://www.cs.
sandia.gov/˜sjplimp/lammps.html.

with molecular bonds. Two types of idealized, 50-length,
bead-spring polymer chains using different bead sizes are
simulated along with some free monomers. The polymer
chains first push off from each other for 10000 timesteps
and then equilibrate for 10000 timesteps. The simulated
system includes 810 atoms and runs for 20000 timesteps.

4.2. CTH

CTH is a multi-material, large deformation, strong shock
wave, solid mechanics code developed at Sandia National
Laboratories. CTH has models for multi-phase, elas-
tic viscoplastic, porous and explosive materials. Three-
dimensional rectangular meshes; two-dimensional rectan-
gular, and cylindrical meshes; and one-dimensional recti-
linear, cylindrical, and spherical meshes are available. It
uses second-order accurate numerical methods to reduce
dispersion and dissipation and to produce accurate, efficient
results. CTH is used extensively within the Department
of Energy laboratory complexes for studying armor/anti-
armor interactions, warhead design, high explosive initia-
tion physics, and weapons safety issues.

CTH has two fundamental modes of operation: with or
without adaptive mesh refinement (AMR). Adaptive mesh
refinement changes the application properties significantly
and is useful for only certain types of input problems.
Therefore, we have chosen one AMR problem and one non-
AMR problem for analysis. The non-AMR input was the
traditional 2 Gas problem which is simplistic, but provides
a comparison with previous studies[5]. The AMR input was
a representative production run.

4.3. ITS

The Integrated TIGER Series (ITS) is a suite of codes to
perform Monte Carlo solutions of linear time-independent
coupled electron/photon radiation transport problems. It
can simulate problems with or without the presence of
macroscopic electric and magnetic fields in multi-material,
multi-dimensional geometries. Individual particles are
tracked with independent particle histories. Thus, particle
transport is assumed to be a linear process in which indi-
vidual particles do not interact with each other, or alter the
medium in which they transport. The ITS data is from an
input deck used in a production run.

5. Results and Analysis

In this section, we provide an analysis of the data by
looking at trends. We are less concerned with exact queue
resources that a particular application uses, but rather are
interested in the relationship between queue resources and
various parameters, such as the size of the job, the input

data, the distribution across ranks, and the correlation of
real application data to popular benchmarks.

5.1. Unexpected Messages

An unexpected message is a message that arrives before
a matching receive has been posted. Unexpected messages
can cause a significant amount of performance degradation.
Unexpected short messages are typically stored in buffers
that are managed by the MPI library and copied into the
user buffer once a matching receive is posted. Too many
unexpected short messages can cause the MPI library to ex-
haust the space alloacated to store them. Unexpected long
messages are typically not buffered at the receiver. Rather,
a rendezvous protocol is used to buffer the message in place
at the sender. When a matching receive is posted, the re-
ceiver takes steps necessary to transfer the data from the
sender. By their nature, unexpected long messages do not
realize the full bandwidth performance of the network.

Unexpected messages are considered to be the “slow
path” because they remain in the unexpected queue for an
indeterminate amount of time. Unexpected short messages
also have large memory resource requirements to accom-
modate the buffering of the entire message at the receiver.
Figure 1 shows the proportion of messages that falls into
each of four categories: expected long, expected short, un-
expected long, and unexpected short. Unexpected short
messages are clearly quite common in the real applications
that were evaluated while unexpected long messages were
very uncommon. ITS demonstrates the worst case behavior
with the proportion of unexpected short messages appearing
to scale linearly with the number of processes in the job. In
all of the cases, it is clear that unexpected messages must be
handled quickly and that significant memory will be needed
to buffer unexpected short messages.

5.2. Queue Lengths

One of the greatest limitations of most modern network
interface hardware is the extremely limited amount of mem-
ory on the card. As such, the maximum length of the posted
receive queue and the unexpected message queue have sig-
nificant implications for the feasibility of message offload.
Figure 2 shows the maximum search length and maximum
overall length for the posted receive and unexpected mes-
sage queues. The maximum queue length is an indication
of the amount of memory resources required to store the
queue. These results indicate that, even for relatively small
numbers of processors, the maximum length of both the
posted queue and the unexpected queue are within the limits
of the memory that a modern NIC would support; however,
the results also indicate several potential problems. The
posted queue length of the AMR version of CTH increases

with the number of processes in the job. Similarly, the un-
expected queue results for the non-AMR version of CTH
and LAMMPS appear to scale linearly. This is potentially
more significant since the unexpected queue is an order of
magnitude longer than the posted queue.

These results also show the disparity between rank 0 and
the rest of the ranks in the job. Removing rank 0 from the
results, the maximum length of the unexpected queue drops
dramatically. This can probably be attributed to the fact
that most applications use rank 0 as the root of collective
operations. This data indicates that uniform allocation of
resources across all ranks may not be optimal.

5.3. Search Length

The search length of a queue is the number of queue en-
tries that are traversed in a given search. While long queues
have implications for the amount of memory required for
NIC offload, the portion of those queues that are searched
has a significant impact on the processing power needed by
the NIC. Search length also affects the real latency seen by
applications.

Figure 2 shows the maximum search length for these ap-
plications. This data reveals many interesting properties.
There are several cases for both queues where the maxi-
mum search length is the entire length of the queue. This
makes sense for the unexpected queue, where a matching
entry may not be in the queue when a receive is posted. It
is more disconcerting to see that several applications search
the entire length of the posted receive queue to find a match.
These results seemingly discourage, for example, an offload
implementation of the MPI matching semantics where a
small portion of the posted receive queue is buffered in NIC
memory and the remainder of the queue is traversed by ac-
cessing host memory from the NIC.

Figure 3 shows the average search depth of the posted
and unexpected queues. Compared to the maximum value,
the average traversal of the posted receive queue is ex-
tremely small. This is also true for the unexpected queue,
except for the ITS application. In this case, the impact of
search length at rank 0 is significant. The disparity between
maximum search length and average search length is also
likely to introduce variability into the execution time of a
time step (the time between synchronization points). This
type of variability is the key symptom of the “rogue OS
effect”[15], which leads to significantly longer applications
execution times. This type of variability will also prove to
be one of the major limiting factors in scaling from 10,000
to 100,000 nodes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

20%

40%

60%

80%

100%

8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(a) CTH - 2Gas (b) CTH - AMR

0%

20%

40%

60%

80%

100%

8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

20%

40%

60%

80%

100%

8 27 64 125

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(c) ITS (d) LAMMPS

Figure 1. Breakdown of messages by expected/unexpected and long/short properties for applications

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(a) Max posted queue length (b) Max posted queue length (no rank 0)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(c) Max posted queue search (d) Max posted queue search (no rank 0)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(e) Max unexpected queue length (f) Max unexpected queue length (no rank 0)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(g) Max unexpected queue search (h) Max unexpected queue search (no rank 0)

Figure 2. Maximum length and search depths of the posted and unexpected message queue

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(a) Average posted queue search (b) Average unexpected queue search

Figure 3. Average search depth of the posted and unexpected queues

5.4 Comparison to Benchmarks

We now compare the results of these applications with
results of the NAS Parallel Benchmark (NPB) suite [9] pre-
viously published in [7]. Our experience with real applica-
tions thus far shows very little correlation with the behavior
of the NPB suite in terms of expected and unexpected mes-
sages. In contrast, there is more correlation in the queue
behaviors of real applications and the NPB suite. In this
case, only the measurements without rank zero are com-
pared. Most of the real applications (like most of the NPB)
have small maximum queue lengths, but some are related to
the number of nodes. The key difference is that the growth
in length for applications appears to be related to log(P)
while the growth for the benchmarks appears to be related
to P . Similarly, the search behavior of the benchmarks is
correlated with, but not identical to, the behavior of the real
applications.

6. Conclusions

This paper presented an initial analysis of the message
passing behavior of four real application scenarios in terms
of the resource usage and resource requirements. The re-
sults indicate that, in many cases, certain MPI resource
requirements scale with the number of processes. The
growth (with process count) of the unexpected queue and
the growth in the percentage of messages which are short
and unexpected requires that both significant memory and
significant processing be dedicated to MPI. Unfortunately,
these patterns vary across applications in a way that indi-
cates that a generalized resource management scheme may
be inappropriate. Moreover, the usage patterns within one
job (specifically for rank 0) vary widely indicating that a
single, static resource management scheme may be insuffi-
cient even within a single job. These results were compared

to the NAS parallel benchmark suite, which was studied us-
ing the same analysis techniques. We found that the de-
gree of correlation between the message passing behavior
of the NPB suite and Sandia’s applications varied based on
the parameters being measured. The behavior of the NPB
suite appears to be a reasonable first approximation of real
applications, but is not truly representative.

7. Related Work

There is a significant amount of work in the area of par-
allel application performance analysis. However, we know
of no work that collects, analyzes, or uses MPI unexpected
messages or MPI queue information as a basis to character-
ize performance, scalability, or network resource usage.

Most performance analysis tools for MPI use the MPI
profiling interface to gather message tracing and timing in-
formation. Since unexpected messages are not exposed
in the MPI programming interface, this information is not
available to the profiling layer. Many of the issues with un-
expected messages that we described in this paper have mo-
tivated work on a portable interface for exposing low-level
MPI implementation details, such as unexpected messages,
to application developers and performance tool developers.
This interface, called PERUSE [10], is currently being ex-
plored by a number of organizations in the MPI research
community. This work emphasizes the need to be able to
capture low-level MPI performance information to assist in
characterizing application message passing requirements.

In addition to performance analysis, there is also a signif-
icant amount of work that characterizes the message passing
behavior of applications and application benchmarks in an
attempt to understand or predict how well they will scale.
Example of this type of analysis can be found in [22] and
[23]. As with performance tools, this analysis does not con-
sider the impact or effect of unexpected messages or queue

lengths, largely because this information is not easily attain-
able.

8. Future Work

This initial analysis provided answers to some important
questions regarding MPI queue behavior for real applica-
tions. However, several important questions remain.

We expect that some of our results are platform depen-
dent and that various apsects of a system may have a signif-
icant impact on MPI queue usage. For example, the cluster
from which our results have been gathered is highly un-
balanced in terms of computation to network bandwidth.
A platform that provides significantly more network band-
width may behave much differently. We intend to explore
the degree to which these types of system parameters im-
pact MPI queue usage. One system aspect that we intend to
explore in depth is the impact of scale. While 128 proces-
sors is a significant number, it is well short of the several
thousand that we expect for the typical application running
on Red Storm.

The approach to instrumentation that we presented is
this paper is straightforward. More advanced techniques
may be necessary to truly capture the level of detail neces-
sary for performance optimizations or to help develop adap-
tive strategies for network interface resource allocation and
management. In particular, we would like to examine the
distribution of MPI queue search data rather than just ex-
amining average data over the entire run of an application.

References

[1] http://www.lanl.gov/projects/pink/.
[2] http://www.llnl.gov/linux/mcr/.
[3] R. Alverson. Red Storm. In Invited Talk, Hot Interconnects

10, August 2003.
[4] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz,

J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second
local area network. IEEE Micro, 15(1):29–36, Feb. 1995.

[5] R. Brightwell, H. E. Fang, and L. Ward. Scalability and per-
formance of CTH on the Computational Plant. In Proceed-
ings of the Second International Workshop on Cluster-Based
Computing, May 2000.

[6] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen.
Portals 3.0: Protocol building blocks for low overhead com-
munication. In Proceedings of the 2002 Workshop on Com-
munication Architecture for Clusters, April 2002.

[7] R. Brightwell and K. D. Underwood. An analysis of NIC
resource usage for offloading MPI. In Proceedings of the
2004 Workshop on Communication Architecture for Clus-
ters, Santa Fe, NM, April 2004.

[8] W. J. Camp and J. L. Tomkins. Thor’s hammer: The first ver-
sion of the Red Storm MPP architecture. In In Proceedings
of the SC 2002 Conference on High Performance Network-
ing and Computing, Baltimore, MD, November 2002.

[9] R. F. V. der Wijngaart. NAS parallel benchmarks version
2.4. Technical report, October 2002.

[10] R. Dimitrov, A. Skjellum, T. Jones, B. de Supinski,
R. Brightwell, C. Janssen, and M. Nochumson. PERUSE:
An MPI performance revealing extensions interface. Pre-
sented at the Sixth IBM System Scientific Computing User
Group, August 2002.

[11] W. Gropp and E. Lusk. MPICH ADI Implementation Refer-
ence Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, October 1994.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, September 1996.

[13] Intel Corporation. Paragon XP/S product overview, 1991.
[14] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-

enberg. The Quadrics network: High-performance cluster-
ing technology. IEEE Micro, 22(1):46–57, January/February
2002.

[15] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Identifying and elimi-
nating the performance variability on the ASCI Q machine.
In Proceedings of the 2003 Conference on High Perfor-
mance Networking and Computing, November 2003.

[16] S. J. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Journal Computation Physics, 117:1–
19, 1995.

[17] S. J. Plimpton. Lammps web page, July 2003.
http://www.cs.sandia.gov/ sjplimp/lammps.html.

[18] S. J. Plimpton, R. Pollock, and M. Stevens. Particle-mesh
ewald and rRESPA for parallel molecular dynamics. In Pro-
ceedings of the Eighth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Minneapolis, MN, Mar.
1997.

[19] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma operating
system for massively parallel computers. In Proceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[20] S. R. W. Timothy G. Mattson, David Scott. A TeraFLOPS
Supercomputer in 1996: The ASCI TFLOP System. In Pro-
ceedings of the 1996 International Parallel Processing Sym-
posium, 1996.

[21] K. D. Underwood and R. Brightwell. The impact of MPI
queue usage on message latency. In Proceedings of the Inter-
national Conference on Parallel Processing (ICPP), Mon-
treal, Canada, August 2004.

[22] J. S. Vetter and F. Mueller. Communication characteristics
of large-scale scientific applications for contemporary clus-
ter architectures. In 16th International Parallel and Dis-
tributed Processing Symposium (IPDPS’02), pages 27–29,
April 2002.

[23] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. E. Culler.
Architectural requirements and scalability of the NAS par-
allel benchmarks. In Proceedings of the SC99 Conference
on High Performance Networking and Computing, Novem-
ber 1999.

